首页> 外文OA文献 >Asymptotic mean-square stability of two-step methods for stochastic ordinary differential equations
【2h】

Asymptotic mean-square stability of two-step methods for stochastic ordinary differential equations

机译:随机常微分方程两步法的渐近均方稳定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We deal with linear multi-step methods for SDEs and study when the numerical appro\-xi\-mation shares asymptotic properties in the mean-square sense of the exact solution. As in deterministic numerical analysis we use a linear time-invariant test equation and perform a linear stability analysis. Standard approaches used either to analyse deterministic multi-step methods or stochastic one-step methods do not carry over to stochastic multi-step schemes. In order to obtain sufficient conditions for asymptotic mean-square stability of stochastic linear two-step-Maruyama methods we construct and apply Lyapunov-type functionals. In particular we study the asymptotic mean-square stability of stochastic counterparts of two-step Adams-Bashforth- and Adams-Moulton-methods, the Milne-Simpson method and the BDF method.
机译:我们处理SDE的线性多步方法,并研究在精确解的均方意义上数值近似共享渐近性质的情况。与确定性数值分析一样,我们使用线性时不变测试方程并执行线性稳定性分析。用于分析确定性多步方法或随机单步方法的标准方法不会继承到随机多步方案。为了获得随机线性两步Maruyama方法的渐近均方稳定性的充分条件,我们构造并应用了Lyapunov型泛函。特别地,我们研究了两步Adams-Bashforth方法和Adams-Moulton方法,Milne-Simpson方法和BDF方法的随机对应物的渐近均方稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号